Technical Challenges in the Evolution of Flexible CIGS Photovoltaics for Terrestrial Applications to a Viable Space Product

Space Power Workshop 2000

Dr. Joseph H. Armstrong Robert G.Wendt Global Solar Energy, LLC

Alan Yehle
Jeff Summers
ITN Energy Systems, Inc.

Programs/Sponsorship

- Flexible CIGS Manufacturing
 - DARPA "Vapor Phase Manufacturing of Flexible Thin-Film CIS Photovoltaics", DARPA agreement No. MDA972-95-3-0036
- High-Voltage Array Development
 - NASA GRC High Voltage Array, NAS3-99102 SBIR Phase II
- Multijunction Devices
 - F29601-98-C0220 (AFRL/Space Vehicles Directorate)
 - 70NANB8H4070 (ATP/NIST)
- Diode Protection
 - BMDO F29601-99-C-0152, Monolithically-Integrated Diode Protection
- Internal Funding at Both ITN/ES and GSE, LLC for Space Products

Conventional Spacecraft Crystalline PV Arrays

Advantage of Flexible CIGS Product

- Negligible Profile Change Allows for Complete Encapsulation of PV
 - Crystalline Technology Has
 Tremendous Profile Change, Making
 Electrical Isolation of Array Virtually
 Impossible
- Electrical Isolation of PV Allows for Conductive Discharge Layer to Eliminate Static Buildup
 - Crystalline Technology Would Need to Ground the Surface of Each Cell Stack, Increasing Cost and Decreasing Reliability

Cell I-V Characteristics

- Achieving Good Efficiencies
 - Up to 11% for Roll Coated CIGS with laboratory-based CdS and ZnO Window Layers
 - Many over 10% using all Roll-to-Roll Processes
 - » Production Based Equipment
 - » Production Based Speeds
 - » Averaging over 8%
 - Good AMO Performance
 - » Need to Develop Database with 3 sigma limits for Flexible CIGS

All Roll-to-Roll In GSE Production-Based Equipment at Production Rates

Current GSE Products for Space

- Flexible CIGS on Stainless Steel Substrate
 - Advantages
 - » More Mature Technology
 - » Higher Process Temperature Limit
 - » Demonstrate Higher Efficiency
 - Disadvantages
 - Conductive SubstrateEliminates MonolithicIntegration
 - » Possible Weight Hit Unless Thin Foils are Used
 - » Must Utilize "Conventional" Integration
 - » More Difficult to Encapsulate

Current GSE Products for Space (cont)

- Flexible CIGS on Polyimide Substrate
 - Advantages
 - Insulating Substrate AllowsMonolithic Integration
 - » Dramatically Fewer Interconnects
 - » Reduced Installation Cost
 - » Higher Voltage String in Smaller Space
 - » Low-Profile Change Between Cells
 - » Easier to Encapsulate
 - Disadvantage
 - » Technology Behind Metal Foil Substrate
 - » Limited Process Temperature
 - » Lower Efficiency

Space vs. Terrestrial CIGS Solar Arrays

- Key Differences in All Deposition Operations and Finishing
 - Optimize Deposition Operations to Achieve Best Efficiency
 - » Use Best Portion of the Web (Decreasing Yield)
 - Requires Extra Deposition Operations for Space Durability

Layer	Terrestrial	Space		
Mo Back Contact	- 0.4 microns, 1 to 2 ohms/sq. - ~1% I ² R Resistive Losses	- 0.8 to 1.0 microns, 0.1 to 0.5 ohms/sq. - ~1% I2R Reistive Losses		
CIGS Absorber	- Maximize Rate at Expense Of Slight Decrease in Efficiency (12 to 24-in/min	 Slow Rate to Optimize Efficiency Use Best (Central Section of Web) ® Decreased Yield 		
CdS Window	0.06 to 0.08 microns, Loose some Short wavelength current but ensure good yield	Optimize to 0.04 microns to minimize short wavelength current losses ® Likely Decrease Yield		
TCO Front				
Contact	0.6 microns to achieve 10 to 30 ohm/sq ~10 % I ² R Resistive Losses	1 to 1.5 microns to achieve 5 to 10 ohm/sq < 5% I ² R Resistive Losses		
Finishing	EVA/Tefzel Industrial Standard	Combination of Extra Coatings for Radiation Protection, Thermal Control, and Charge Control		

Thermal Issues in Space

- Challenging Heating and Cooling Rates
- CIGS Requires a Nominal Emittance of 0.8 for Reasonable Thermal Environment

Coatings from the HVASA Program

- Identified and Demonstrated Coatings Required for Space Applications
 - Conductive Film for Charge Dissipation
 - Thermal Control/Radiation Protection Coating
- Demonstrated High-Voltage String with Zero Net Current Design
 - Ideal for All Large Array Applications
 - Reduced Harnessing Weight by Using Back of Module as Conductor

Optical Performance of Thin-Film Devices

 Addition of Silica and Transparent Conductive Film

Emittance of Various CIGS Films

• Addition of Silica Increases Emittance Significantly

Sample #	Description	Measured Normal	Estimated Hemispherical
		Emittance	Emittance
990707A2	CIGS/ITO + 10 microns Silica	0.75	0.72
990707A6	CIGS/ITO	0.22	0.24
990701M1	Upilex/Mo + 10 microns Silica	0.70	0.68
981102A1	Al foil + 10 microns Silica	0.68	0.67
981003U2	50 micron Bare Upilex U50S, backed w/Al plate	0.79	0.76
981003U1	As above + 10 microns Silica	0.83	0.79

Flexible CIGS Metal Substrate Array

- Metallic Substrate Cells Interconnected in Series via Comb Contacts
 - Optimized Performance by Minimizing Losses with Various Geometries

Flexible CIGS Polyimide Substrate Test Article

- Demonstrates Monolithically-Integrated Diode Protection
 - Opaque Coating Not Included for Clarity

Pathway To Higher Efficiency

- With Baseline Process in Hand (7 to 10%), Further Increase in Efficiency Achieved By Optimizing Individual Layers
 - Minimizing Resistance in Front and Back Contact
 - Maximize Transmission in the Front Contact
 - Minimizing Sputtering Damage

- Optimizing Ga Profile in CIGS
- Optimize CdS Thickness

- After Single Junction is Optimized
 - » Multi-Junction (AFSA-II, Air Force Program)

Multijunction Approach

Tandem CIS Device

Multijunction Development

• A) I-V and B) optical transmission and reflection data from CIGS devices deposited on Mo/glass and ITO/glass substrates during AFSA Phase I.

Multijunction Development

				AM1.5G
Substrate/	Voc	Jsc	FF	Efficiency
Back contact	(V)	(mA/cm^2)	(%)	(%)
Mo/glass	0.587	31.4	67.7	12.5
ITO/glass	0.585	32.0	58.4	10.9

Summary

- Thin-Film CIGS Flexible Devices are Promising Technologies for Future Space Missions
- Significant Work in Progress to Develop Flexible CIGS for Space Applications
 - Processing
 - Integration
 - Protection
 - Performance
- More Work to be Performed to Ensure Product Reliability and to Establish Control Limits of a Production Device

